Unique single-domain state in a polycrystalline ferroelectric ceramic
نویسندگان
چکیده
Non-180° ferroelectric domains are also ferroelastic domains; their existence in polycrystalline materials is to relieve internal stresses generated during solid-solid phase transitions and minimize the elastic distortion energy. Therefore, grains with random orientations in polycrystalline ceramics are always occupied by many domains, especially in the regions close to grain boundaries. In this Rapid Communication, we report the observation of a single-domain state in a BaTiO3-based polycrystalline ceramic at intermediate poling electric fields with in situ transmission electron microscopy. The grains in the virgin ceramic and under high poling fields are found multidomained. The unique single-domain state is believed to be responsible for the ultrahigh piezoelectric property observed in this lead-free composition and is suggested to be of orthorhombic symmetry for its exceptionally low elastic modulus.
منابع مشابه
In situ Transmission Electron Microscopy Studies of Electric-field-induced Phenomena in Ferroelectrics
High electric fields were delivered to specimens during imaging in the transmission electron microscopy (TEM) chamber to reveal details of electric field-induced phenomena in ferroelectric oxides. These include the polarization switching in nanometer-sized ferroelectric domains and the grain boundary cavitation in a commercial lead zirconate titanate (PZT) polycrystalline ceramic, the domain wa...
متن کاملDirect observation of the recovery of an antiferroelectric phase during polarization reversal of an induced ferroelectric phase
Electric fields are generally known to favor the ferroelectric polar state over the antiferroelectric nonpolar state for their Coulomb interactions with dipoles in the crystal. In this paper, we directly image an electricfieldassisted ferroelectric-to-antiferroelectric phase transition during polarization reversal of the ferroelectric phase in polycrystalline Pb0.99{Nb0.02[(Zr0.57Sn0.43)0.92Ti0...
متن کاملEvolution of nanodomains during the electric-field-induced relaxor to normal ferroelectric phase transition in a Sc-doped Pb(Mg1/3Nb2/3)O3 ceramic
Sc doping in Pb(Mg1/3Nb2/3)O3 enhances the B-site 1:1 cation order significantly but promotes the ferroelectric polar order moderately. At low doping levels, the electrical polar domains remain at the nanometer scale and the relaxor ferroelectric behavior is preserved. A normal ferroelectric state can be triggered with electric fields from the relaxor state at lower temperatures. This electric-...
متن کاملARTICLES—Outstanding Meeting Papers Domain switch toughening in polycrystalline ferroelectrics
Mode I steady crack growth was analyzed to determine the toughening due to domain switching in ferroelectric ceramics. A multi-axial, electromechanically coupled, incremental constitutive theory is applied to model the material behavior of the ferroelectric ceramic. The constitutive law is then implemented within the finite element method to study steady crack growth. The effects of mechanical ...
متن کاملSwitching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3-Pb(Fe,Ta)O3 single-crystal lamellae.
Thin single-crystal lamellae cut from Pb(Zr,Ti)O3-Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent...
متن کامل